Post

개념-inertia tensor

cheet sheet

1.moment of inertia

\(I = i_{xx}cos^2\alpha + i_{yy}cos^2\beta + i_{zz}cos^2\gamma + 2i_{xy}{cos\alpha}{cos\beta} + 2i_{yz}{cos\beta}{cos\gamma} + 2i_{xz}{cos\alpha}{cos\gamma}\) - 식(1)

2.dyadic product

2.1.dyadic product of two vector a and b is denoted by ab (병치)

2.2.dyadic product of two vector a and b in \(\mathbb{R}^3\) euclidean space is as following form.

\[\mathbf {ab} = a_{1}b_{1}\mathbf {ii} +a_{1}b_{2}\mathbf {ij} +a_{1}b_{3}\mathbf {ik}\] \[a_{2}b_{1}\mathbf {ji} +a_{2}b_{2}\mathbf {jj} +a_{2}b_{3}\mathbf {jk}\] \[a_{3}b_{1}\mathbf {ki} +a_{3}b_{2}\mathbf {kj} +a_{3}b_{3}\mathbf {kk}\]

3.moment of inertia tensor

\[\mathbf{I} = \hat{n}^T \mathbf {I} \hat{n}\]

such that

\[\mathbf{I} = {\begin{bmatrix}I_{11}&I_{12}&I_{13} \\ I_{21}&I_{22}&I_{23} \\ I_{31}&I_{32}&I_{33}\end{bmatrix}}\] \[\hat{n} = \hat{i}{cos\alpha} + \hat{j}{cos\beta} + \hat{k}{cos\gamma}\]

4.angular momentum

\[\vec{L} = (\sum (m_ir_i^2) - \sum m_i \vec{r_i} (\vec{r_i})) \cdot \vec{w} = \mathbf{I}\vec{w}\]

여기서, \(\vec{r}_i(\vec{r}_i)\)는 dyadic product이다.

5.kinematics energy

\[T= \frac{1}{2}m_iv_i^2 = \frac{1}{2}\vec{w}\vec{L} = \frac{1}{2}\vec{w}\mathbf{I}\vec{w}^T\]

process

1.moment of inertia

\[\hat{n} = \hat{i}{cos\alpha} + \hat{j}{cos\beta} + \hat{k}{cos\gamma}\] \[|r_i \times \hat{n}|^2 = r_{i\perp}^2 = (y_i^2 + z_i^2)cos^2\alpha + (x_i^2 + z_i^2)cos^2\beta + (x_i^2 + y_i^2)cos^2\gamma - 2x_iy_i{cos\alpha}{cos\beta} 2y_iz_i{cos\beta}{cos\gamma} 2x_iz_i{cos\alpha}{cos\gamma}\]

such that

\(\hat{n}\) unit vector of rotational axis, \(r_i\) is position vector of particle.

\[I = \sum r_{i\perp}^2m_i\]

2.dyadic product

\[\mathbf {ab} =\sum _{j=1}^{N}\sum _{i=1}^{N}a_{i}b_{j}\mathbf {e} _{i}\mathbf {e} _{j}\]

3.moment of inertia tensor

식(1) 참고

4.angular momentum, 5.kinematics energy

reference 참고 (angular momentum, kinematics energy represented as inertia tensor)

아래 자료는 다시 정리가 필요할 때 읽어보자.

3D Rigid Body Dynamics

Reference

[moment of inertia] Dynamics(2022, R.C. Hibbeler)-17.2 PLANAR KINETIC EQUATIONS OF MOTION

moment of inertia and product of inertia

angular momentum, kinematics energy represented as inertia tensor

dyadic product

This post is licensed under CC BY 4.0 by the author.